Select a Course:	Math Grade 7
Teacher:	CORE Math Grade 7
Course:	Math Grade 7
Year:	$2016-17$
Months:	- All -

Grade 7 Math Integers, Expressions, and Equations (Pre-Unit)

Enduring Understandings

Variables can be used to represent numbers in any type of mathematical problem.

Understand the difference between an expression and an equation.

Expressions you simplify and equations you solve for the variable's value.

Write and solve multi step equations with positive integers.

Properties of operations allow us to add linear expressions

Essential Questions

T
When and how are expressions and equations applied to real world situations?

- How can the order of operations be applied to evaluating expressions, and solving from one-step to multi-step equations?
- What happens when you add, subtract, multiply and divide integers?

Standards

7.EE.A. 1 - Use properties of operations to generate equivalent expressions ~ Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.B. 3 - Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.

CCSS.Math.Practice.MP6 - Attend to precision.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

CCSS.Math.Practice.MP8 - Look for and express regularity in repeated reasoning.
7.NS.A. 1 - Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.A. 2 - Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of multiplication and division and of fractions to multiply and

Knowledge \& Skills

Expressions
containing positive
integers
Properties of
operations, integrate
when necessary
Simplifying
algebraic expressions
Solving one-step
positive equations
(Solving two-step
positive equations

Add, subtract, multiply and divide with integers.

Academic Language

divide rational numbers.
7.NS.A. 3 - Apply and extend previous understandings of operations with fractions ~ Solve real-world and mathematical problems involving the four operations with rational numbers.
7.NS.A.1a - Apply and extend previous understandings of operations with fractions ~ Describe situations in which opposite quantities combine to make 0 .
7.NS.A.1b - Apply and extend previous understandings of operations with fractions ~ Understand $p+q$ as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
7.NS.A.1c - Apply and extend previous understandings of operations with fractions ~ Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d - Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.2a - Apply and extend previous understandings of operations with fractions ~ Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1) $(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.A.2b - Apply and extend previous understandings of operations with fractions ~ Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=$ $p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2c - Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to multiply and divide rational numbers.

Enduring Understandings

Rates, ratios, and proportional relationships: express how quantities change in relationship to each otherRates, ratios, and proportional relationships: can be represented in multiple ways

Rates, ratios, and proportional relationships: can be applied to problem solving situations

Essential Questions

How do rates, ratios, and proportional relationships apply to our world?

When and why do I use proportional comparisons?

How does comparing quantities describe the relationship between them?

How do graphs illustrate proportional relationships?

Standards
7.RP.A. 1 - Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.
7.RP.A. 2 - Analyze proportional relationships and use them to solve real-world and mathematical problems ~Recognize and represent proportional relationships between quantities.
7.RP.A.2a - Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
7.RP.A.2b - Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
7.RP.A.2c - Analyze proportional relationships and use them to solve real-world and mathematical problems ~Represent proportional relationships by equations.
7.RP.A.2d - Analyze proportional relationships and use them to solve real-world and mathematical problems \sim Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.

CCSS.Math.Practice.MP6 - Attend to

Knowledge \& Skills
 Academic Language

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | precision.
 CCSS.Math.Practice.MP7 - Look for
 and make use of structure.
 CCSS.Math.Practice.MP8 - Look for | |

Grade 7 Math The Number System

Enduring
 Understandings

T
Rational numbers use the same properties as whole numbers.

Rational numbers can be used to represent and solve real life problems.

Rational numbers can be represented with visuals (including distance models), language, and real-life contexts.

Essential Questions

สHow are rational numbers used and applied in real-life and mathematical situations?

What is the relationship between properties of operations and types of numbers?

Standards

7.NS.A. 1 - Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.A. 2 - Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

Knowledge \& Skills

Academic Language

A number line model can be used to represent the unique placement of any number in relation to other numbers.

There are precise terms and sequences to describe operations with rational numbers
7.NS.A. 3 - Apply and extend previous understandings of operations with fractions ~ Solve real-world and mathematical problems involving the four operations with rational numbers.
7.NS.A.1a - Apply and extend previous understandings of operations with fractions ~ Describe situations in which opposite quantities combine to make 0 .
7.NS.A.1b - Apply and extend previous understandings of operations with fractions \sim Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
7.NS.A.1c - Apply and extend previous understandings of operations with fractions ~ Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d - Apply and extend previous understandings of operations with fractions \sim Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.2a - Apply and extend previous understandings of operations with fractions ~ Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1) $(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.A. 2 b - Apply and extend previous understandings of operations with fractions ~ Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=$ $\mathrm{p} /(-\mathrm{q})$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2c - Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to multiply and divide rational numbers.
7.NS.A.2d - Apply and extend previous understandings of operations with fractions ~ Convert a rational number to aRational Numbers - Terminating and repeating decimals
R Rational Numbers - Compare and order rational numbers

त Rational Numbers - Add, subtract, multiply, and divide rational numbersPositive IntegerZero PairBar Notation

*Common Denominator Denominator
*Like FractionsRational Numbers
Repeating DecimalTerminating
DecimalUnlike Fractions

- *Commutative Property
(7) *Associative Property

ㄱ. *Factoring

- *Order of Operations
(* Coordinate Grid

ㄴ *Ordered Pair*Variable

- Borrow, Receive, Deposit, Withdraw
decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.
CCSS.Math.Practice.MP6 - Attend to precision.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

CCSS.Math.Practice.MP8 - Look for and express regularity in repeated reasoning.

同 Grade 7 Math Expressions and Equations

Enduring Understandings

Variables can be used to represent numbers in any type of mathematical problem.

T
Understand the difference between an expression and an equation.

ㄴ. Expressions you simplify and equations you solve for the variable's value.

Write and solve multi step equations including all rational numbers.

Some equations may have more than one solution and understand inequalities.

Properties of operations allow us to add, subtract, factor, and expand linear expressions.

Essential Questions

-

How can the order of operations be applied to evaluating expressions, and solving from one-step to multi-step equations?
7. When and how are expressions, equations, inequalities and graphs applied to real world situations?

Standards

7.EE.A. 1 - Use properties of operations to generate equivalent expressions ~ Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.A. 2 - Use properties of operations to generate equivalent expressions ~ Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.

CCSS.Math.Practice.MP6 - Attend to precision.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

CCSS.Math.Practice.MP8 - Look for and express regularity in repeated reasoning.

Knowledge \& Skills	Academic Language
Algebraic expressions	Commutative Property
Properties of operations	Associative Property
Distributive property	Multiplicative Property of Zero
Simplifying algebraic expressions	Variable Numerical expression
Add and subtract linear expressions	Algebraic expression
	Coefficient Constant
	Equation Evaluate Combining like

شi Expressions can be
manipulated to suit a

Mathematical expressions, equations, inequalities and graphs are used to represent and solve real-world and mathematical problems.

Properties, order of operations, and inverse operations are used to simplify expressions and solve equations efficiently.

Algebra is applied when solving geometric problems (i.e. circumference and area of a circle).

			terms Inverse operation Expression Equivalent Term Simplest Form
When and how are expressions, equations, inequalities and graphs applied to real world situations? What are some possible real - life situations to which there may be more than one solution? How does the ongoing use of fractions and decimals apply to real - life situations?	7.EE.B. 3 - Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. 7.EE.B. 4 - Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. 7.EE.B.4a - Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Solve word problems leading to equations of the form $p x+q=r$ and $p(x+$ $q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. 7.EE.B.4b - Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+$ $q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them. CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively. CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others. CCSS.Math.Practice.MP4 - Model with mathematics.	Solve one step addition, subtraction, multiplication, and division equations Solve two step equations Solve one step inequalities Solve two step inequalities	

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.

CCSS.Math.Practice.MP6 - Attend to precision.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

CCSS.Math.Practice.MP8 - Look for and express regularity in repeated reasoning.

Grade 7 Math Geometry

Enduring
 Understandings

Real world and geometric structures are composed of shapes and spaces with specific properties.

Shapes are defined by their properties.

Shapes have a purpose for designing structures.Three-dimensional figures have relationships to specific two-dimensional figures.

Planes that cut polyhedra create related two-dimensional figures.

Essential Questions

-

How are forms and objects created or represented?

ㄷ
How are twodimensional and three-dimensional space related?

How are specific characteristics and a classification system useful in analyzing and designing structures?

근How does our understanding of geometry help us to describe real-world objects?

Standards

7.G.A. 1 - Draw construct, and describe geometrical figures and describe the relationships between them \sim Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
7.G.A. 2 - Draw construct, and describe geometrical figures and describe the relationships between them ~ Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G.A. 3 - Draw construct, and describe geometrical figures and describe the relationships between them ~ Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
7.G.B.4 - Solve real-life and mathematical problems involving angle measure, area, surface area, and volume ~Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G.B. 5 - Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Academic Language

Acute Angle
Acute Triangle
(base
(complementary
angles
(Adjacent angles

- Draw threedimensional figures

㧱 Cross sections

- Circumference

Area of circles

Volume of rectangular and triangular prisms

Surface area of rectangular and triangular prisms

A Grade 7 Math Statistics and Probability

Enduring Understandings

The probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring.

The probability of a chance event is approximated by collecting data on the chance process that produces it, observing its long run relative frequency, and predicting the approximate relative frequency given the probability.

A probability model, which may or may not be uniform, is used to find

Essential Questions

-

How are probability and the likelihood of an occurrence related and represented?

-

How is probability approximated?

ㄱ
How is a probability model used?

ㄱ
How are probabilities of compound events determined?

Standards

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively.
CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.

CCSS.Math.Practice.MP6 - Attend to precision.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

CCSS.Math.Practice.MP8 - Look for and

Knowledge \& Skills
 Academic Language

SimulationCompound event

- ProbabilitySample spaceRandom sampleRandomOutcome
Theoretical probabilityExperimental probabilityRelative
probabilities of events.

Various tools are used to find probabilities of compound events. (Including organized lists, tables, tree diagrams, and simulations.)
express regularity in repeated reasoning.
7.SP.C. 6 - Investigate chance processes and develop, use, and evaluate probability models ~ Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its longrun relative frequency, and predict the approximate relative frequency given the probability.
7.SP.C. 7 - Investigate chance processes and develop, use, and evaluate probability models ~ Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
7.SP.C. 8 - Investigate chance processes and develop, use, and evaluate probability models \sim Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
7.SP.C.7a - Investigate chance processes and develop, use, and evaluate probability models ~ Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.
7.SP.C.7b - Investigate chance processes and develop, use, and evaluate probability models ~ Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.
7.SP.C.8a - Investigate chance processes and develop, use, and evaluate probability models ~ Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
7.SP.C.8b - Investigate chance processes and develop, use, and evaluate probability models \sim Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.
7.SP.C.8c - Investigate chance processes and develop, use, and evaluate probability models ~ Design and use a simulation to generate frequencies for compound events.
7.SP.C. 5 - Investigate chance processes and develop, use, and evaluate probability models ~ Understand that the probability of a chance event is a number

		between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.		Statistics Survey Systematic Random Sample Unbiased Sample Voluntary Response Sample
Statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Random sampling tends to produce representative samples and support valid inferences. Two data distributions can be compared using visual and numerical representations based upon measures of center and measures of variability to draw conclusions.	How can two data distributions be compared? How can statistics be used to gain information about a sample population? How can a random sample of a larger population be used to draw inferences?	7.SP.A. 1 - Use random sampling to draw inferences about a population ~ Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences. 7.SP.A. 2 - Use random sampling to draw inferences about a population ~ Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. 7.SP.B. 3 - Draw informal comparative inferences about two populations ~ Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. 7.SP.B. 4 - Draw informal comparative inferences about two populations ~ Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them. CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively. CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others. CCSS.Math.Practice.MP4 - Model with mathematics. CCSS.Math.Practice.MP5 - Use appropriate tools strategically. CCSS.Math.Practice.MP6 - Attend to precision. CCSS.Math.Practice.MP7 - Look for and	Make predictions Biased and unbiased samples Compared populations	

				make use of structure. CCSS.Math.Practice.MP8 - Look for and express regularity in repeated reasoning.			
$\stackrel{\text { @ }}{\stackrel{1}{5}}$	Enduring Understandings	Essential Questions	§	Standards §	Knowledge \& Skills	Academic Language	\%
$\frac{3}{3}$	Enduring Understandings	Essential Questions	§	Standards §	Knowledge \& Skillls	Academic Language	§

